
APPENDIX

A. Additional Details of Experimental Setup

Experimental setup. We design experiments to fully test
the efficacy of our method by providing the robot with
videos captured in everyday scenarios, which naturally
encompass visual backgrounds and camera setups that
are different from the one for the robot. Specifically, we
record an RGB-D video of a person performing each of
the seven tasks in everyday scenarios, such as an office
or a kitchen. We use an iPad for recording, which comes
with a TrueDepth Camera, and we fix it on a camera stand.
The videos can be found in the supplementary materials.
During test time, the robot receives visual data through a
single RGB-D camera, Intel Realsense435, and performs
manipulation in its workstation to evaluate policies. We use
the 7DoF Franka Emika Panda robot for all the experiments.
Evaluation protocol. As we describe in the experimental
setup, the videos naturally include various visual back-
grounds and camera perspectives that are significantly dif-
ferent from the robot workspace. Therefore, we only in-
tentionally vary two dimensions before evaluating each trial
of robot execution, namely the spatial layouts and the new
object instances. Furthermore, the new object generaliza-
tions are included in the tasks Mug-on-coaster and
Chips-on-plate as mugs and chip bags have many
similar instances. As for the other three tasks, there are no
novel objects involved, but we extensively vary the spatial
layouts of task-relevant objects for evaluation. The policy
performance of a task is the averaged success rates over 15
real-world trials. Aside from the success rates, we also group
the failed executions into three types: Missed tracking of
objects due to failure of the vision models, Missed grasping

of objects during execution, and Unsatisifed contacts where
the target object configurations are not achieved for reasons
other than the previous two failure types.

B. Additional Technical Details

Data Structure of an OOG. For easy reproducibility of the
proposed method, we present a table that explains the data
structure of an OOG.
Changepoint detections. We use changepoint detection to
identify changes in velocity statistics of TAP keypoints.
Specifically, we use a kernel-based changepoint detection
method and choose radial basis function [23]. The imple-
mentation of this function is directly based on an existing
library Ruptures [69].
Plane estimation. In Section III-B, we mentioned using
the prior knowledge of tabletop manipulation scenarios and
transforming the point clouds by estimating the table plane.
Here, we explain how the plane estimation is computed.
Concretely, we rely on the plane estimation function from
Open3D [70], which gives an equation in the form of
ax + by + cz = d. From this estimated plane equation,
we can infer a normal vector of the estimated table plane,
(a, b, c), in the camera coordinate frame. Then, we align this
plane with xy plane in the world coordinate frame, where we

compute a transformation matrix that displaces the normal
vector (a, b, c) to the normalized vector (0, 0, 1) along the
z-axis of the world coordinate frame. This transformation
matrix is used to transform point clouds in every frame so
that the plane of the table always aligns with the xy plane
of the world coordinate.
Object localization at test time. When we localize objects at
test time, there could be some false positive segmentation of
distracting objects. Such vision failures will prevent the robot
policy from successfully executing actions. To exclude such
false positive object segmentaiton, we use Segmentation Cor-
respondence Model (SCM) from GROOT [11], where SCM
filters out the false positive segmentation of the objects by
computing the affinity scores between masks using DINOv2
features.
Global registration. In this paper, we use global registration
to compute the transformation between observed object point
clouds from videos and those from rollout settings. We
implement this part using a RANSAC-based registration
function from Open3D [70]. Specifically, given two object
point clouds, we first compute their features using Fast-Point
Feature Histograms (FPFH) [71], and then perform a global
RANSAC registration on the FPFH features of the point
clouds [27].
Implementation of SE(3) optimization. We parameterize
each homogeneous matrix Ti into a translation variable and
a rotation variable and randomly initialize each variable
using the normal distribution. We choose quaternions as the
representation for rotation variables, and we normalize the
randomly initialized vectors for rotation so that they remain
unit quaternions. With such parameterization, we optimize
the SE(3) end-effector trajectories T0, T1, . . . , Ttl+1�tl over
the Objective (1). However, jointly optimizing both trans-
lation and rotation from scratch typically results in trivial
solutions, where the rotation variables do not change much
from the initialization due to the vanishing gradients. To
avoid trivial solutions, we implement a two-stage process.
In the first stage, we only optimize the rotation variables
with 200 gradient steps. Then, the optimization proceeds to
the second stage, where we optimize both the rotation and
translation variables for another 200 gradient steps. In this
case, we prevent the optimization process from getting stuck
in trivial solutions for rotation variables. We implement the
optimization process using Lietorch [72].

C. System Setup

Details of camera observations. As mentioned in Sec-
tion IV, we use an iPad with a TrueDepth camera for
collecting human video demonstrations. We use an iOS app,
Record3D, that allows us to access the depth images from the
TrueDepth camera. We record RGB and depth image frames
in sizes 1920 ⇥ 1080 and 640 ⇥ 480, respectively. To align
the RGB images with the depth data, we resize the RGB
frames to the size 640 ⇥ 480. The app also automatically
records the camera intrinsics of the iPhone camera so that
the back-projection of point clouds is made possible.

Node/Edge Type Attributes

G.voi Object Node 3D point cloud of an object.
G.vh Hand Node Hand mesh and locations of the thumb and index finger.

G.vpij Point Node A trajectory of a TAP keypoint between two keyframes,
recorded in xyz positions.

G.eoik Object-Object Edge A binary value of contact or not.
G.ehi Object-Hand Edge A binary value of contact or not.

G.epij Object-Point Edge The presence of an edge represents the belonging relation,
and no specific feature is attached.

TABLE I: Data Structure of an OOG. For a given OOG G = (V, E), it has V = {G.voi} [{G.vh} [{G.vpij}, and E = {G.eoik} [
{G.ehi} [{G.epij}.

To stream images at test time, we use an Intel Realsense
D435i. In our robot experiments, we use RGB and depth
images in the size 640⇥480 or 1280⇥720 in varied scenarios,
all covered in our evaluations. Evaluating on different image
sizes showcases that our method is not tailored to specific
camera configurations, supporting the wide applicability of
constructed policy.
Implementation of real robot control. In our evaluation,
we reset the robot to a default joint position before object
interaction every time. Then we use a reaching primitive for
the robot to reach the interaction points. Resetting to the
default joint position enables an unoccluded observation of
task-relevant objects at the start of each decision-making
step. Note that the execution of object interaction does
not necessarily require resetting. To command the robot to
interact with objects, we convert the optimized SE(3) action
sequence to a sequence of joint configurations using inverse
kinematics and control the robot using joint impedance
control. We use the implementation of Deoxys [5] for the
joint impedance controller that operates at 500 Hz. To avoid
abrupt motion and make sure the actions are smooth, we
further interpolate the joint sequence from the result of
inverse kinematics. Specifically, we choose the interpolation
so that the maximal displacement for each joint does not
exceed 0.5 radian between two adjacent waypoints.

D. Task descriptions and Success conditions

Task descriptions. 1) Mug-on-coaster: placing a
mug on the coaster; 2) Simple-boat-assembly:
putting a small red block on a toy boat; 3)
Chips-on-plate: placing a bag of chips on the
plate; 4) Succulents-in-llama-vase: inserting
succulents into the llama vase; 5) Rearrange-mug-box:
placing a mug on a coaster and placing a cream cheese box
on a plate consecutively; 6) Complex-boat-assembly:
placing both a small red block and a chimney-like part on
top of a boat. 7) Prepare-breakfast: placing a mug
on a coaster and putting a food box and can on the plate.
Success conditions. We describe the success conditions for
each of the tasks in detail:

• Mug-on-coaster: A mug is placed upright on the
coaster.

• Simple-boat-assembly: A red block is placed in
the slot closest to the back of the boat. The block needs

to be upright in the slot.
• Chips-on-plate: A bag of chips is placed on the

plate, and the bag does not touch the table.
• Succulents-in-llama-vase: A pot of succu-

lents is inserted into a white vase in the shape of a
llama.

• Rearrange-mug-box: The mug is placed upright on
the coaster, and the cream cheese box is placed on the
plate.

• Complex-boat-assembly: The chimney-like part
is placed in the slot closest to the front of the boat. The
red block is placed in the slot closest to the back of the
boat. Both blocks need to be upright in the slots.

• Prepare-breakfast: The mug is placed on top of
a coaster, the cream cheese box is placed in the large
area of the plate, and the food can is placed on the small
area as shown in the video demonstration.

In practice, we record the success and failure of a rollout as
follows: If the program in ORION policy returns true when
matching the observed state with the final OOG from a plan,
we mark a trial as success as long as we observe that the
object state indeed satisfies the success condition of a task as
described above. Otherwise, if the robot generates dangerous
actions (bumping into the table) or does not achieve the
desired subgoal after executing the computed trajectory, we
consider the rollout as a failure and we manually record the
failure.

E. Additional Details on Experiments

Diverse video recordings used in the ablation study.
Figure 6 shows the three videos taken in very different
scenarios: kitchen, office, and outdoor. The video taken in
kitchen scenario is used in the major quantitative evaluation,
termed “Original setting”. The other two settings are termed
“Diverse setting 1” and “Diverse setting 2.” We conduct
an ablation study where we compare policies imitated from
these three videos, which inherently involve varied visual
scenes, camera perspectives. The result of the ablation study
is shown in Figure 5.

F. Limitations

We consider the task goals to be described by contact
states so that we naturally avoid the ambiguities introduced
when considering spatial relations, such as placing items next

Kitchen
(Original setting)

Office
(Diverse setting 1)

Outdoor
(Diverse setting 2)

Fig. 6: This figure visualizes the initial and final frames of the three videos of the same task Mug-on-coaster.

to an object. How to infer human intentions while clearing
the inherent ambiguities in videos is a future direction to
explore. We have also assumed the videos are captured in
RGB-D using a stationary camera. In reality, most videos
in-the-wild are taken in RGB images with moving camera
views. A future direction is to build a model that reconstruct
the dynamic scenes from in-the-wild video data, where the
model needs to reconstruct the geometry of both static and
dynamic objects.

This work uses the robot with a parallel-jaw gripper,
therefore we have focused on translating the thumb and index
finger positions of the human hand to the robot gripper and
assume the thumb and index finger are involved in hand-
object interaction. However, OOG representation is general
enough to capture full hand poses and can be used in
dexterous manipulation, which is shown by our follow-up
work [68].

While our OOG representation is general enough to cap-
ture full hand poses, we only have hardware access to the
Panda robot, which prevents us from showcasing dexterous
manipulation tasks. A future promising direction is to extend
ORION to a robot hardware with a dexterous hand so that
the full hand pose can be exploited and unlock the dexterous
manipulation tasks.

In ORION, a robot imitates the human actions at the kine-
matic level to tackle the problem of “open-world imitation
from observation.” Consequently, ORION does not consider
tasks that require force sensing such as screwing. Another
future direction that ORION unlocks is how to allow robot to
imitate forceful manipulation behaviors [67]. Another future
extension is to extend the action synthesis in ORION to

handle real-time motion adjustment, an improvement that
will unlock non-prehensile behaviors such as planar pushing.

Furthermore, ORION establishes the correspondence be-
tween objects from demonstration and rollout using global
registration of the point clouds. Such correspondence relies
solely on the geometry of objects, which may suffer from
ambiguities when the object shapes are symmetric and the
correspondence relies on the texture information. A future
direction is to incorporate both semantic and geometric in-
formation of the objects to establish object correspondence.

	Introduction
	Problem Formulation
	Method
	Open-world Object Graph
	Manipulation Plan Generation From V
	Robot Policy To Synthesize Actions

	Experiments
	Experiment Setup
	Experimental Results

	Related Work
	Conclusions
	Appendix
	Additional Details of Experimental Setup
	Additional Technical Details
	System Setup
	Task descriptions and Success conditions
	Additional Details on Experiments
	Limitations

