1from argparse import ArgumentParser
2
3import wandb
4
5from amago.envs import AMAGOEnv
6from amago.envs.builtin.alchemy import SymbolicAlchemy
7from amago.cli_utils import *
8
9
10if __name__ == "__main__":
11 parser = ArgumentParser()
12 add_common_cli(parser)
13 args = parser.parse_args()
14
15 config = {}
16 traj_encoder_type = switch_traj_encoder(
17 config,
18 arch=args.traj_encoder,
19 memory_size=args.memory_size,
20 layers=args.memory_layers,
21 )
22 exploration_wrapper_type = switch_exploration(
23 config, "bilevel", rollout_horizon=200, steps_anneal=2_500_000
24 )
25 agent_type = switch_agent(config, args.agent_type, reward_multiplier=100.0)
26 tstep_encoder_type = switch_tstep_encoder(
27 config, arch="ff", n_layers=2, d_hidden=256, d_output=256
28 )
29
30 use_config(config, args.configs)
31 make_train_env = lambda: AMAGOEnv(
32 env=SymbolicAlchemy(),
33 env_name="dm_symbolic_alchemy",
34 )
35 group_name = f"{args.run_name}_symbolic_dm_alchemy"
36 for trial in range(args.trials):
37 run_name = group_name + f"_trial_{trial}"
38 experiment = create_experiment_from_cli(
39 args,
40 make_train_env=make_train_env,
41 make_val_env=make_train_env,
42 max_seq_len=201,
43 traj_save_len=201,
44 group_name=group_name,
45 run_name=run_name,
46 tstep_encoder_type=tstep_encoder_type,
47 traj_encoder_type=traj_encoder_type,
48 exploration_wrapper_type=exploration_wrapper_type,
49 agent_type=agent_type,
50 val_timesteps_per_epoch=2000,
51 )
52 switch_async_mode(experiment, args.mode)
53 experiment.start()
54 if args.ckpt is not None:
55 experiment.load_checkpoint(args.ckpt)
56 experiment.learn()
57 experiment.evaluate_test(make_train_env, timesteps=20_000, render=False)
58 experiment.delete_buffer_from_disk()
59 wandb.finish()